Abstract
Abstract Sanitary sewer systems are designed to collect and transport sanitary wastewater and stormwater. Pipe inspection is important in identifying both the type and location of pipe defects to maintain the normal sewer operations. Closed-circuit television (CCTV) has been commonly utilized for sewer pipe inspection. Currently, interpretation of the CCTV images is mostly conducted manually to identify the defect type and location, which is time-consuming, labor-intensive and inaccurate. Conventional computer vision techniques are explored for automated interpretation of CCTV images, but such process requires large amount of image pre-processing and the design of complex feature extractor for certain cases. In this study, an automated approach is developed for detecting sewer pipe defects based on a deep learning technique namely faster region-based convolutional neural network (faster R-CNN). The detection model is trained using 3000 images collected from CCTV inspection videos of sewer pipes. After training, the model is evaluated in terms of detection accuracy and computation cost using mean average precision (mAP), missing rate, detection speed and training time. The proposed approach is demonstrated to be applicable for detecting sewer pipe defects accurately with high accuracy and fast speed. In addition, a new model is constructed and several hyper-parameters are adjusted to study the influential factors of the proposed approach. The experiment results demonstrate that dataset size, initialization network type and training mode, and network hyper-parameters have influence on model performance. Specifically, the increase of dataset size and convolutional layers can improve the model accuracy. The adjustment of hyper-parameters such as filter dimensions or stride values contributes to higher detection accuracy, achieving an mAP of 83%. The study lays the foundation for applying deep learning techniques in sewer pipe defect detection as well as addressing similar issues for construction and facility management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.