Abstract

In this work, an attempt has been made to develop an automated system for detecting electroclinical seizures such as tonic-clonic seizures, complex partial seizures, and electrographic seizures (EGSZ) using higher-order moments of scalp electroencephalography (EEG). The scalp EEGs of the publicly available Temple University database are utilized in this study. The higher-order moments, namely skewness and kurtosis, are extracted from the temporal, spectral, and maximal overlap wavelet distributions of EEG. The features are computed from overlapping and non-overlapping moving windowing functions. The results show that the wavelet and spectral skewness of EEG is higher in EGSZ than in other types. All the extracted features are found to have significant differences (p < 0.05), except for temporal kurtosis and skewness. A support vector machine with a radial basis kernel designed using maximal overlap wavelet skewness yields a maximum accuracy of 87%. In order to improve the performance, the Bayesian optimization technique is utilized to determine the suitable kernel parameters. The optimized model achieves the highest accuracy of 96% and an MCC of 91% in three-class classification. The study is found to be promising, and it could facilitate the rapid identification process of life-threatening seizures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call