Abstract

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) are important diffusion MRI techniques for detecting microstructure abnormities in diseases such as Alzheimer's. The advantages of DKI over DTI have been reported generally; however, the indistinct relationship between diffusivity and kurtosis has not been clearly revealed in clinical settings. In this study, we hypothesize that the combination of diffusivity and kurtosis in DKI improves the capacity of DKI to detect Alzheimer's disease compared with diffusivity or kurtosis alone. Specifically, a support vector machine-based approach was applied to combine diffusivity and kurtosis and to compare different indices datasets. Strict assessments were conducted to ensure the reliability of all classifiers. Then, data from the optimized classifiers were used to detect abnormalities. With the combination, high accuracy performances of 96.23% were obtained in 53 subjects, including 27 Alzheimer's patients. More highly scored abnormal regions were selected by the combination than alone. The results revealed that more precise diffusivity and complementary kurtosis mainly contributed to the high performance of the combination in DKI. This study provides further understanding of DKI and the relationship between diffusivity and kurtosis in pathologic white matter alterations in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.