Abstract

Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection without staining or expert analysis.

Highlights

  • Malaria is a parasitic infectious disease caused by Plasmodium species, with P. falciparum being the most deadly and clinically relevant

  • All of the classification methods have higher specificities compared to their sensitivities when distinguishing uninfected from infected red blood cell (RBC) for all 3 stages of infection

  • The specificities ranged from 98.4% for logistic regression (LR) with the early stage of infection (ET) to 100% for the best performing method (LDC) for both LT and S stages

Read more

Summary

Introduction

Malaria is a parasitic infectious disease caused by Plasmodium species, with P. falciparum being the most deadly and clinically relevant. This parasite has a complex intra-erythrocytic life cycle, moving through several stages of development while consuming the hemoglobin of the red blood cell (RBC). The gold standard for malaria diagnosis is manual microscopic evaluation of Giemsa stained blood smears. The utility of this approach is limited by the skill of an expert microscopist. Both the staining process and microscopic examination can be time consuming [1]. There is an unmet need to bypass these requirements to allow easy detection and staging of malaria infection

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call