BackgroundMyopic maculopathy (MM) has become a major cause of visual impairment and blindness worldwide, especially in East Asian countries. Deep learning approaches such as deep convolutional neural networks (DCNN) have been successfully applied to identify some common retinal diseases and show great potential for the intelligent analysis of MM. This study aimed to build a reliable approach for automated detection of MM from retinal fundus images using DCNN models.MethodsA dual-stream DCNN (DCNN-DS) model that perceives features from both original images and corresponding processed images by color histogram distribution optimization method was designed for classification of no MM, tessellated fundus (TF), and pathologic myopia (PM). A total of 36,515 gradable images from four hospitals were used for DCNN model development, and 14,986 gradable images from the other two hospitals for external testing. We also compared the performance of the DCNN-DS model and four ophthalmologists on 3000 randomly sampled fundus images.ResultsThe DCNN-DS model achieved sensitivities of 93.3% and 91.0%, specificities of 99.6% and 98.7%, areas under the receiver operating characteristic curves (AUC) of 0.998 and 0.994 for detecting PM, whereas sensitivities of 98.8% and 92.8%, specificities of 95.6% and 94.1%, AUCs of 0.986 and 0.970 for detecting TF in two external testing datasets. In the sampled testing dataset, the sensitivities of four ophthalmologists ranged from 88.3% to 95.8% and 81.1% to 89.1%, and the specificities ranged from 95.9% to 99.2% and 77.8% to 97.3% for detecting PM and TF, respectively. Meanwhile, the DCNN-DS model achieved sensitivities of 90.8% and 97.9% and specificities of 99.1% and 94.0% for detecting PM and TF, respectively.ConclusionsThe proposed DCNN-DS approach demonstrated reliable performance with high sensitivity, specificity, and AUC to classify different MM levels on fundus photographs sourced from clinics. It can help identify MM automatically among the large myopic groups and show great potential for real-life applications.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call