Abstract
Macular hole is a tear or break in the macula. It is located in the center of the retina and affects central vision of aged people. Optical Coherence Tomography (OCT) enables accurate diagnosis of macular hole. Existing algorithms available to detect cysts and retinal layers, but identifying macular hole in an accurate manner is still a missing entity. Hence we propose an automated system for the accurate macular hole detection. The proposed system has six stages in process. The first stage starts with preprocessing the OCT image, then detecting Nerve Fiber Layer (NFL). The detected NFL layer is then processed and depth feature is extracted. Then the macular hole is detected in OCT images using our proposed system. The proposed system is evaluated with the healthy macula and macular hole OCT images. The proposed system is also compared with other machine learning algorithms. By experimentation results, the proposed algorithm provides 94% accuracy in finding macular hole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.