Abstract
Seafloor massive sulfide deposits have attracted attention as a mineral resource, as they contain a wide variety of base, precious, and other valuable critical metals. Previous studies have shown that signatures of hydrothermal activity can be detected by a multi-beam echo sounder (MBES), which would be beneficial for exploring sulfide deposits. Although detecting such signatures from acoustic images is currently performed by skilled humans, automating this process could lead to improved efficiency and cost effectiveness of exploration for the seafloor deposits. Herein, we attempted to establish a method for automated detection of MBES water column anomalies using deep learning models. First, we compared the “Mask R-CNN” and “YOLO-v5” detection model architectures, wherein YOLO-v5 yielded higher F1 scores. We then compared the number of training classes and found that models trained with two classes (signal and noise) exhibited superior performance compared with models trained with only one class (signal). Finally, we examined the number of trainable parameters and obtained the best model performance when the YOLO-v5l model with a large trainable parameters was used in the two-class training process. The best model had a precision of 0.928, a recall of 0.881, and an F1 score of 0.904. Moreover, this model achieved a low false alarm rate (less than 0.7%) and had a high detection speed (20−25 ms per frame), indicating that it can be applied in the field for automatic and real-time exploration of seafloor hydrothermal deposits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.