Abstract

Purpose. We developed the next stage of our computer assisted diagnosis (CAD) system to aid radiologists in evaluating CT images for aortic disease by removing innocuous images and highlighting signs of aortic disease. Materials and Methods. Segmented data of patient's contrast-enhanced CT scan was analyzed for aortic dissection and penetrating aortic ulcer (PAU). Aortic dissection was detected by checking for an abnormal shape of the aorta using edge oriented methods. PAU was recognized through abnormally high intensities with interest point operators. Results. The aortic dissection detection process had a sensitivity of 0.8218 and a specificity of 0.9907. The PAU detection process scored a sensitivity of 0.7587 and a specificity of 0.9700. Conclusion. The aortic dissection detection process and the PAU detection process were successful in removing innocuous images, but additional methods are necessary for improving recognition of images with aortic disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.