Abstract

ObjectiveMonitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse.MethodsAs part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability.Results537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk). The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with observed infection rates.ConclusionA prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify rates of DRM. Automated detection using this statistical approach is feasible and could be applied to other nosocomial infections.

Highlights

  • Healthcare-associated infections (HAI) pose a great burden on current medical care and are increasingly viewed as preventable complications

  • HAI refers to the entire scope of infections associated with medical care and includes nosocomial infections

  • drain-related meningitis (DRM) occurred in 82 patients (15.3%), or 13.5 infections per 1000 drainage days at risk

Read more

Summary

Introduction

Healthcare-associated infections (HAI) pose a great burden on current medical care and are increasingly viewed as preventable complications. HAI refers to the entire scope of infections associated with medical care and includes nosocomial infections. The European burden of HAI has been estimated at 4.5 million infections contributing to 148,000 deaths [1]. Hospitals are encouraged to report HAI rates through surveillance organizations such as the National Healthcare Safety Network (NHSN) from the Centers for Disease Control and Prevention (CDC) in the United States [2] and the PREZIES network in the Netherlands [1,3]. Manual registration of HAI rates is time-consuming and susceptible to error due to subjective interpretation of definitions and manual data handling [5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call