Abstract

Diabetic retinopathy (DR) is one of the severe eye conditions due to diabetes complication which can lead to vision loss if left untreated. In this paper, a computationally simple, yet very effective, DR detection method is proposed. First, a segmentation independent two-stage preprocessing based technique is proposed which can effectively extract DR pathognomonic signs; both bright and red lesions, and blood vessels from the eye fundus image. Then, the performance of Local Binary Patterns (LBP), Local Ternary Patterns (LTP), Dense Scale-Invariant Feature Transform (DSIFT) and Histogram of Oriented Gradients (HOG) as a feature descriptor for fundus images, is thoroughly analyzed. SVM kernel-based classifiers are trained and tested, using a 5-fold cross-validation scheme, on both newly acquired fundus image database from the local hospital and combined database created from the open-sourced available databases. The classification accuracy of 96.6% with 0.964 sensitivity and 0.969 specificity is achieved using a Cubic SVM classifier with LBP and LTP fused features for the local database. More importantly, in out-of-sample testing on the combined database, the model gives an accuracy of 95.21% with a sensitivity of 0.970 and specificity of 0.932. This indicates the proposed model is very well-fitted and generalized which is further corroborated by the presented train-test curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.