Abstract

The detection of cracks in concrete infrastructure is a problem of great interest. In particular, the detection of cracks in buried pipes is a crucial step in assessing the degree of pipe deterioration for municipal and utility operators. The key challenge is that whereas joints and laterals have a predictable appearance, the randomness and irregularity of cracks make them difficult to model. Our previous work has led to a segmented pipe image (with holes, joints, and laterals eliminated) obtained by a morphological approach. This paper presents the development of a statistical filter for the detection of cracks in the pipes. We propose a two-step approach. The first step is local and is used to extract crack features from the buried pipe images; we present two such detectors as well as a method for fusing them. The second step is global and defines the cracks among the segment candidates by processes of cleaning and linking. The influences of the parameters on crack detection are studied and results are presented for various pipe images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.