Abstract

Chronic Kidney disease (CKD) is a progressive disease affecting more than twenty million individuals in the United States. Disease progression is often characterized by complications such as cardiovascular diseases, anemia, hyperlipidemia and metabolic bone diseases etc., Based on estimated GFR values, the disease is categorized in 5 stages which significantly influence patient outcome. Cardiovascular ultrasound (US) (echocardiography) imagery demonstrate significant hemodynamic alterations that are secondary to CKD in the form of volume/ pressure overload. As the CKD pathology directly impacts cardiovascular disease, the US imaging shows structural and hemodynamic adaptation. Hence, the development of a computer-aided diagnosis (CAD) model to predict CKD would be desirable, and can potentially improve treatment. Several prior studies have utilized kidney features for quantitative analysis. In this paper, acquisition of the four-chamber heart US image is employed to predict CKD stage. The method combines image and feature fusion techniques under a graph embedding framework to characterize heart chamber properties. Moreover, a support vector machine is incorporated to classify heart US images. The proposed method achieved 100 % accuracy for a two-class system, and 99.09 % accuracy for a multi-class categorization scenario. Hence, our proposed CAD tool is deployable in both clinic and hospital settings for computer-aided screening of CKD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.