Abstract

Detection of brain metastases (BM) and segmentation for treatment planning could be optimized with machine learning methods. Convolutional neural networks (CNNs) are promising, but their trade-offs between sensitivity and precision frequently lead to missing small lesions. Combining volume aware (VA) loss function and sampling strategy could improve BM detection sensitivity. Retrospective. A total of 530 radiation oncology patients (55% women) were split into a training/validation set (433 patients/1460 BM) and an independent test set (97 patients/296 BM). 1.5 T and 3T, contrast-enhanced three-dimensional (3D) T1-weighted fast gradient echo sequences. Ground truth masks were based on radiotherapy treatment planning contours reviewed by experts. A U-Net inspired model was trained. Three loss functions (Dice, Dice + boundary, and VA) and two sampling methods (label and VA) were compared. Results were reported with Dice scores, volumetric error, lesion detection sensitivity, and precision. A detected voxel within the ground truth constituted a true positive. McNemar's exact test to compare detected lesions between models. Pearson's correlation coefficient and Bland-Altman analysis to compare volume agreement between predicted and ground truth volumes. Statistical significance was set at P ≤ 0.05. Combining VA loss and VA sampling performed best with an overall sensitivity of 91% and precision of 81%. For BM in the 2.5-6 mm estimated sphere diameter range, VA loss reduced false negatives by 58% and VA sampling reduced it further by 30%. In the same range, the boundary loss achieved the highest precision at 81%, but a low sensitivity (24%) and a 31% Dice loss. Considering BM size in the loss and sampling function of CNN may increase the detection sensitivity regarding small BM. Our pipeline relying on a single contrast-enhanced T1-weighted MRI sequence could reach a detection sensitivity of 91%, with an average of only 0.66 false positives per scan. 3 TECHNICAL EFFICACY: Stage 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.