Abstract

We aimed to perform an external validation of an existing commercial AI software program (BoneView™) for the detection of acute appendicular fractures in pediatric patients. In our retrospective study, anonymized radiographic exams of extremities, with or without fractures, from pediatric patients (aged 2-21) were included. Three hundred exams (150 with fractures and 150 without fractures) were included, comprising 60 exams per body part (hand/wrist, elbow/upper arm, shoulder/clavicle, foot/ankle, leg/knee). The Ground Truth was defined by experienced radiologists. A deep learning algorithm interpreted the radiographs for fracture detection, and its diagnostic performance was compared against the Ground Truth, and receiver operating characteristic analysis was done. Statistical analyses included sensitivity per patient (the proportion of patients for whom all fractures were identified) and sensitivity per fracture (the proportion of fractures identified by the AI among all fractures), specificity per patient, and false-positive rate per patient. There were 167 boys and 133 girls with a mean age of 10.8years. For all fractures, sensitivity per patient (average [95% confidence interval]) was 91.3% [85.6, 95.3], specificity per patient was 90.0% [84.0,94.3], sensitivity per fracture was 92.5% [87.0, 96.2], and false-positive rate per patient in patients who had no fracture was 0.11. The patient-wise area under the curve was 0.93 for all fractures. AI diagnostic performance was consistently high across all anatomical locations and different types of fractures except for avulsion fractures (sensitivity per fracture 72.7% [39.0, 94.0]). The BoneView™ deep learning algorithm provides high overall diagnostic performance for appendicular fracture detection in pediatric patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.