Abstract

The purpose of this study is to derive vectoral 3D roof planes from the LIDAR point cloud of the detected buildings. For segmentation of the LIDAR point cloud, the RANSAC algorithm has been used. Because the RANSAC algorithm is sensitive to the used parameters, and results in over- or under-segmentation of the clusters, a refinement method has been proposed. The detection of roof planes has been improved with use of the refinement method. Therefore, similar plane surfaces have been combined, followed by the region-growing algorithm, to split the under-segmented plane surfaces. The digitization of the roof boundaries is performed using the alpha-shapes algorithm, followed by line fitting to generalize the roof edges. The quality assessment has been done using the reference vector dataset with comparison using four different criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.