Abstract

In this study, we propose an automated design system for an image recognition algorithm applicable to picking work in general and actual factory environments. Considering that an image recognition algorithm design consists of frameworks for selecting a rough recognition method from any of the three basic procedures of pre-processing of contained images, feature-extraction, and discrimination, we formulate it as an optimization problem and propose a random multi-start optimization method by which to derive solutions. We have conducted four types of evaluation experiments for the following four combinations: large or small degrees of similarity in the shape of objects to be recognized and whether they have patterned surfaces. The evaluation experiments show that the proposed design system succeeds in selecting a framework that fits the features of the objects to be recognized and that the designed basic processes have an F measure of 0.9 or more.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.