Abstract
Abstract The observation of gravitational waves is expected to allow new tests of general relativity to be performed. As the gravitational wave signal is hidden by detector noise in observed data, a method to reduce noise is required to analyze the ringdown phase of gravitational wave signals. Recently, some noise reduction methods based on a neural network have been proposed; however, the results of these methods must be considered with caution because the output can contain spurious components. To overcome this limitation, in this study, we developed a neural network– based method to design optimal digital filters for extracting ringdown gravitational wave signals. In this method, no spurious components appear in the output because the digital filters reduce the noise. We conducted simulations with waveforms of gravitational waves from binary black hole coalescence and confirmed that the proposed method designs appropriate filters that reduce detector noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.