Abstract
Classifier between states of “normal/high maintenance/defective” for oil-lubricated parts and units of D30KP/KP-2 aircraft gas turbine engines is developed. The classifier is based on “random forest” machine learning algorithm. It is trained on results of microwave plasma measurements of metallic admixture in oil filter wash samples of engines. Technical state for train set was determined earlier by expert method and was confirmed by factory disassembly study. Classifier result for states “normal/high maintenance/defective” matches expert method in 73 %, 52 %, 66 % respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.