Abstract
Recent advances in artificial intelligence, especially the subfield of machine learning, is commonly cited as one of the driving forces for digital transformation and innovative business models. Ongoing research is focusing on embedding solutions based on machine learning into business processes which are commonly modelled using the BPMN standard. The Object Management Group has recently adopted the Decision Model and Notation standard. By using the Decision Model and Notation (DMN) it is possible to replace multiple decision points embedded in business processes. The purpose of this research is to provide a method to derive DMN decision tables from the corresponding machine learning model generated by the decision tree classifier. The development is conducted using the Python machine learning library scikit-learn and Camunda Modeler. This approach facilitates and automates the process of converting machine learning models into DMN tables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.