Abstract
BackgroundCollecting and standardizing clinical research data is a very tedious task. This study is to develop an intelligent data collection tool, named CHB-EDC, for real-world cohort studies of chronic hepatitis B (CHB), which can assist in standardized and efficient data collection. MethodsCHB_EDC is capable of automatically processing various formats of data, including raw data in image format, using internationally recognized data standards, OCR, and NLP models. It can automatically populate the data into eCRFs designed in the REDCap system, supporting the integration of patient data from electronic medical record systems through commonly used web application interfaces. This tool enables intelligent extraction and aggregation of data, as well as secure and anonymous data sharing. ResultsFor non-electronic data collection, the average accuracy of manual collection was 98.65 %, with an average time of 63.64 min to collect information for one patient. The average accuracy CHB-EDC was 98.66 %, with an average time of 3.57 min to collect information for one patient. In the same data collection task, CHB-EDC achieved a comparable average accuracy to manual collection. However, in terms of time, CHB-EDC significantly outperformed manual collection (p < 0.05). Our research has significantly reduced the required collection time and lowered the cost of data collection while ensuring accuracy. ConclusionThe tool has significantly improved the efficiency of data collection while ensuring accuracy, enabling standardized collection of real-world data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.