Abstract

AbstractRobotic weeding enables weed control near or within crop rows automatically, precisely and effectively. A computer‐vision system was developed for detecting crop plants at different growth stages for robotic weed control. Fusion of color images and depth images was investigated as a means of enhancing the detection accuracy of crop plants under conditions of high weed population. In‐field images of broccoli and lettuce were acquired 3–27 days after transplanting with a Kinect v2 sensor. The image processing pipeline included data preprocessing, vegetation pixel segmentation, plant extraction, feature extraction, feature‐based localization refinement, and crop plant classification. For the detection of broccoli and lettuce, the color‐depth fusion algorithm produced high true‐positive detection rates (91.7% and 90.8%, respectively) and low average false discovery rates (1.1% and 4.0%, respectively). Mean absolute localization errors of the crop plant stems were 26.8 and 7.4 mm for broccoli and lettuce, respectively. The fusion of color and depth was proved beneficial to the segmentation of crop plants from background, which improved the average segmentation success rates from 87.2% (depth‐based) and 76.4% (color‐based) to 96.6% for broccoli, and from 74.2% (depth‐based) and 81.2% (color‐based) to 92.4% for lettuce, respectively. The fusion‐based algorithm had reduced performance in detecting crop plants at early growth stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call