Abstract

Grain number per rice panicle, which directly determines grain yield, is an important agronomic trait for rice breeding and yield-related research. However, manually counting grains of rice per panicle is time-consuming, laborious, and error-prone. In this research, a grain detection model was proposed to automatically recognize and count grains on primary branches of a rice panicle. The model used image analysis based on deep learning convolutional neural network (CNN), by integrating the feature pyramid network (FPN) into the faster R-CNN network. The performance of the grain detection model was compared to that of the original faster R-CNN model and the SSD model, and it was found that the grain detection model was more reliable and accurate. The accuracy of the grain detection model was not affected by the lighting condition in which images of rice primary branches were taken. The model worked well for all rice branches with various numbers of grains. Through applying the grain detection model to images of fresh and dry branches, it was found that the model performance was not affected by the grain moisture conditions. The overall accuracy of the grain detection model was 99.4%. Results demonstrated that the model was accurate, reliable, and suitable for detecting grains of rice panicles with various conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.