Abstract

Protein crystallography laboratories are performing an increasing number of experiments to obtain crystals of good diffraction quality. Better automation has enabled researchers to prepare and run more experiments in a shorter time. However, the problem of identifying which experiments are successful remains difficult. In fact, most of this work is still performed manually by humans. Automating this task is therefore an important goal. As part of a project to develop a new and automated high-throughput capillary-based protein crystallography instrument, a new image-classification subsystem has been developed to greatly reduce the number of images that require human viewing. This system must have low rates of false negatives (missed crystals), possibly at the cost of raising the number of false positives. The image-classification system employs a support vector machine (SVM) learning algorithm to classify the blocks making up each image. A new algorithm to find the area within the image that contains the drop is employed. The SVM uses numerical features, based on texture and the Gabor wavelet decomposition, that are calculated for each block. If a block within an image is classified as containing a crystal, then the entire image is classified as containing a crystal. In a study of 375 images, 87 of which contained crystals, a false-negative rate of less than 4% with a false-positive rate of about 40% was consistently achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.