Abstract

In this study, a new hybrid machine learning (ML) method is developed to classify the power quality disturbances (PQDs) for a hydrogen energy-based distributed generator (DG) system. The proposed hybrid ML method uses a new approach for the feature extraction by using a pyramidal algorithm with an un-decimated wavelet transform (UWT). The pyramidal UWT method is used and investigated with the Stochastic Gradient Boosting Trees (SGBT) classifier to classify PQD signals for a Solid Oxide Fuel Cell & Photovoltaic (SOFC&PV)-based DG. The overfitting problem of SGBT in noisy signals is eliminated with the features extracted by pyramidal UWT. Mathematical, simulative and real data results confirm that the developed UWT-SGBT method can classify PQDs with high accuracy of up to 99.59%. The proposed method is also tested under noisy conditions, and the pyramidal UWT-SGBT method outperformed other ML with wavelet transform (WT)-based methods in the literature in terms of noise immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call