Abstract
The purposes of the study were (1)to compare postural sway between participants with Parkinson's disease (PD) and healthy controls and (2)to develop and validate an automated classification of PD postural control patterns using a machine learning approach. A total of 9 participants in the early stage of PD and 12 healthy controls were recruited. Participants were instructed to stand on a force plate and maintain stillness for 2 minutes with eyes open and eyes closed. The center of pressure data were collected at 50 Hz. Linear displacements, standard deviations, total distances, sway areas, and multiscale entropy of center of pressure were calculated and compared using mixed-model analysis of variance. Five supervised machine learning algorithms (ie,logistic regression, K-nearest neighbors, Naïve Bayes, decision trees, and random forest) were used to classify PD postural control patterns. Participants with PD exhibited greater center of pressure sway and variability compared with controls. The K-nearest neighbor method exhibited the best prediction performance with an accuracy rate of up to 0.86. In conclusion, participants with PD exhibited impaired postural stability and their postural sway features could be identified by machine learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.