Abstract
In this paper we propose a new approach for automated diagnosis and classification of Magnetic Resonance (MR) human brain images, using Wavelets Transform (WT) as input to Genetic Algorithm (GA) and Support Vector Machine (SVM). The proposed method segregates MR brain images into normal and abnormal. Our contribution employs genetic algorithm for feature selection witch requires much lighter computational burden. An excellent classification rate of 100% could be achieved using the support vector machine. We observe that our results are significantly better than the results reported in a previous research work employing Wavelet Transform and Support Vector Machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.