Abstract
Several fruit recognition researches have been performed on so many fruits cutting across orange, banana, strawberry, apple, etc. But little or no consideration has been given to pawpaw. This might be due to its complex nature. Identification of ripe pawpaw from unripe species using colour-based feature extraction method and back propagation neural network (BPNN) model is a complex task since a green looking pawpaw could be ripped when analysed. In this paper, the ripeness of pawpaw was determined by a simple colour recognition algorithm using a BPNN model. RGB colour components of the captured images are extracted after the pawpaw images are resized. After the application of a simple heuristic method, the colour components of the resized images are rescaled. Finally, the rescaled images’ colour histogram is obtained and used as feature vector and the BPNN model uses the feature vector to classify the pawpaw species. The proposed model has an accuracy of 97\(\%\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.