Abstract

ObjectiveThe electroencephalographic (EEG) signals contain information about seizures and their onset location. There are several seizure onset patterns reported in the literature, and these patterns have clinical significance. In this work, we propose a system to automatically classify five seizure onset patterns from intracerebral EEG signals. MethodsThe EEG was segmented by clinicians indicating the start and end time of each seizure onset pattern, the channels involved at onset and the seizure onset pattern. Twelve features that represent the time domain characteristics and signal complexity were extracted from 663 seizures channels of 24 patients. The features were used for classification of the patterns with support vector machine - Error-Correcting Output Codes (SVM-ECOC). Three patient groups with a similar number of seizure segments were created, and one group was used for testing and the rest for training. This test was repeated by rotating the testing and training data. ResultsThe feature space formed by both time domain and multiscale sample entropy features perform well in classification of the data. An overall accuracy of 80.7% was obtained with these features and a linear kernel of SVM-ECOC. ConclusionsThe seizure onset patterns consist of varied time and complexity characteristics. It is possible to automatically classify various seizure onset patterns very similarly to visual classification. SignificanceThe proposed system could aid the medical team in assessing intracerebral EEG by providing an objective classification of seizure onset patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.