Abstract

Abstract Model checking is a successful approach for verifying hardware and software systems. Despite its success, the technique suffers from the state explosion problem which arises due to the large state space of real-life systems. One solution to the state explosion problem is compositional verification, that aims to decompose the verification of a large system into the more manageable verification of its components. To account for dependencies between components, assume-guarantee reasoning defines rules that break-up the global verification of a system into local verification of individual components, using assumptions about the rest of the system. In recent years, compositional techniques have gained significant successes following a breakthrough in the ability to automate assume-guarantee reasoning. However, automation has been restricted to simple acyclic assume-guarantee rules. In this work, we focus on automating circular assume-guarantee reasoning in which the verification of individual components mutually depends on each other. We use a sound and complete circular assume-guarantee rule and we describe how to automatically build the assumptions needed for using the rule. Our algorithm accumulates joint constraints on the assumptions based on (spurious) counterexamples obtained from checking the premises of the rule, and uses a SAT solver to synthesize minimal assumptions that satisfy these constraints. To the best of our knowledge, our work is the first to fully automate circular assume-guarantee reasoning. We implemented our approach and compared it with established non-circular compositional methods that use learning or SAT-based techniques. The experiments show that the assumptions generated for the circular rule are generally smaller, and on the larger examples, we obtain a significant speedup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.