Abstract

The study is focused on the use of machine learning models for the automated detection of impact damage in carbon fiber reinforced polymer (CFRP) by flash-pulse thermographic testing. A new method for thermographic data pre-processing, which is based on statistical features, was proposed. Nine machine learning models for the automated detection of impact damage in CFRP samples were applied to the raw thermographic data, data pre-processed by the suggested method and data pre-processed by the widely used thermographic signal reconstruction (TSR) method. The machine learning models were tested to provide a binary classification of impact damage in CFRP. The results presented in this study show improved performance of the classification if the data are pre-processed by the proposed method. The best results were obtained by a Bagged tree ensemble trained with statistical features. The final balanced accuracy achieved for the Bagged trees model trained on 40 statistical features was 99.8 % which indicates a very good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.