Abstract
Cervical cancer is a common cancer that affects women around the world, and it is also the most common cancer in the developing countries. The cancer burden has increased due to several factors, such as population growth and ageing. In the early century, the systematization of cervical cancer cells takes some time to process manually, and the result that comes out is also inaccurate. This article presents a new nucleus segmentation on pap smear cell images based on structured analysis or morphological approach. Morphology is a broad set of image processing operations that process images based on shape, size and structure. This operation applies a structural element of the image to create an output image of the same size. The most basic of these operations are dilation and erosion. The results of the numerical analysis indicate that the proposed method achieved about 94.38% (sensitivity), 82.56% (specificity) and 93% (accuracy). Also, the resulting performance was compared to a few existing techniques such as Bradley Method, Nick Method and Sauvola Method. The results presented here may facilitate improvements in the detection method of the pap smear cell image to resolve the time-consuming issue and support better system performance to prevent low precision result of the Human Papilloma Virus (HPV) stages. The main impact of this paper is will help the doctor to identify the patient disease based on Pap smear analysis such as cervical cancer and increase the percentages of accuracy compared to the conventional method. Successful implementation of the nucleus detection techniques on Pap smear image can become a standard technique for the diagnosis of various microbiological infections such as Malaria and Tuberculosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomimetics, Biomaterials and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.