Abstract
Abnormal cardiac functionality produces irregular heart rhythms which are commonly known as arrhythmias. In some conditions, arrhythmias are treated as very dangerous which may lead to sudden cardiac arrest. The incidence and prevalence of cardiac anomalies seeks early detection of arrhythmias using automated classification techniques. In the past, numerous automated arrhythmia detection techniques have been developed that are based on electrocardiogram (ECG) signal analysis. Focusing on the prospective research in this field, this article reports a comprehensive review of existing techniques that are obtained using search engines such as IEEE explore, Google scholar and science direct. Based on the review, the existing techniques are broadly categorized into two types: machine-learning and deep-learning-based techniques. In this study, it is noticed that the performance of the machine-learning-based arrhythmia detection techniques depend on pre-processing of ECG signal, R-peaks detection, features extraction and classification tools while the deep-learning-based techniques do not require the features extraction step. Generally, the existing techniques utilize Massachusetts Institute of Technology-Beth Israel Hospital arrhythmia database to evaluate the classification performance. The classification performance of automated techniques also depends on ECG data used for training and testing of the classifier. It is expected that the performance should be evaluated using a variety of ECG signals including the cases of inter-patient and intra-patient paradigm. The existing techniques also require to deal with the class-imbalance problem. In addition to this, a specific partition-ratio between training and testing datasets should be maintained for fair comparison of performance of different techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.