Abstract

We calibrate Linear and Mixed Integer Programs with a bi-level estimator, minimizing under First-order-conditions (FOC) conditions a penalty function considering the calibration fit and deviations from given parameters. To deal with non-convexity, a heuristic generates restart points from current best-fit parameters and their means. Monte-Carlo analysis assesses the approach by drawing parameters for a model optimizing acreages under maximal crop shares, a land balance and annual plus intra-annual labour constraints; a variant comprises integer based investments. Resulting optimal solutions perturbed by white noise provide calibration targets. The approach recovers the true parameters and thus allows for systematic and automated calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.