Abstract
An automated scheme for calculating numerical derivatives of functions is presented and applied to the Taylor expansion of potential energy surfaces. The computational cost is reduced by invoking the symmetry properties of noncubic groups. The scheme is applied to the quartic force field of isotopomers of AlH3 by numerical differentiation of the CCSD(T) energy, using the cc-pCVQZ basis for the harmonic part of the potential and the cc-pCVTZ basis for the anharmonic part. From this force field, zero-order vibrational corrections to the geometry and the fundamental frequencies are calculated by second-order perturbation theory. The results are compared with experiment and previous calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.