Abstract

The classical paradigm of line and curve detection in images, as prescribed by the Hough transform, breaks down in cluttered and noisy imagery. In this paper we present an "upgraded" and ultimately more robust approach to line detection in images. The classical approach to line detection in imagery is low-pass filtering, followed by edge detection, followed by the application of the Hough transform. Peaks in the Hough transform correspond to straight line segments in the image. In our approach we replace low pass filtering by anisotropic diffusion; we replace edge detection by phase analysis of frequency components; and finally, lines corresponding to peaks in the Hough transform are statistically analyzed to reveal the most prominent and likely line segments (especially if the line thickness is known a priori) in the context of sampling distributions. The technique is demonstrated on real and synthetic aperture sonar (SAS) imagery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call