Abstract

Bug report assignment is an important part of software maintenance. In particular, incorrect assignments of bug reports to development teams can be very expensive in large software development projects. Several studies propose automating bug assignment techniques using machine learning in open source software contexts, but no study exists for large-scale proprietary projects in industry. The goal of this study is to evaluate automated bug assignment techniques that are based on machine learning classification. In particular, we study the state-of-the-art ensemble learner Stacked Generalization (SG) that combines several classifiers. We collect more than 50,000 bug reports from five development projects from two companies in different domains. We implement automated bug assignment and evaluate the performance in a set of controlled experiments. We show that SG scales to large scale industrial application and that it outperforms the use of individual classifiers for bug assignment, reaching prediction accuracies from 50 % to 89 % when large training sets are used. In addition, we show how old training data can decrease the prediction accuracy of bug assignment. We advice industry to use SG for bug assignment in proprietary contexts, using at least 2,000 bug reports for training. Finally, we highlight the importance of not solely relying on results from cross-validation when evaluating automated bug assignment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.