Abstract
Bridge maintenance will become a widespread trend in the engineering industry as the number of bridges grows and time passes. Cracking is a common problem in bridges with concrete structures. Allowing it to expand will result in significant economic losses and accident risks This paper proposed an automatic detection and segmentation method of bridge surface cracks based on computer vision deep learning models. First, a bridge surface crack detection and segmentation dataset was established. Then, according to the characteristics of the bridge, we improved the You Only Look Once (YOLO) algorithm for bridge surface crack detection. The improved algorithm was defined as CR-YOLO, which can identify cracks and their approximate locations from multi-object images. Subsequently, the PSPNet algorithm was improved to segment the bridge cracks from the non-crack regions to avoid the visual interference of the detection algorithm. Finally, we deployed the proposed bridge crack detection and segmentation algorithm in an edge device. The experimental results show that our method outperforms other baseline methods in generic evaluation metrics and has advantages in Model Size(MS) and Frame Per Second (FPS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.