Abstract

Segmentation of brain tumours is a complex problem in medical image processing and analysis. It is a time-consuming and error-prone task. Therefore, computer-aided detection systems need to be developed to decrease physicians' workload and improve the accuracy of segmentation. This paper proposes a level set method constrained by an intuitive artificial intelligence-based approach to perform brain tumour segmentation. By studying 3D brain tumour images, a new segmentation technique based on the Modified Particle Swarm Optimisation (MPSO), Darwin Particle Swarm Optimisation (DPSO), and Fractional Order Darwinian Particle Swarm Optimisation (FODPSO) algorithms were developed. The introduced technique was verified according to the MICCAI RASTS 2013 database for high-grade glioma patients. The three algorithms were evaluated using different performance measures: accuracy, sensitivity, specificity, and Dice similarity coefficient to prove the performance and robustness of our 3D segmentation technique. The result is that the MPSO algorithm consistently outperforms the DPSO and FO DPSO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call