Abstract
Due to the complex structure of brain images, accurately detecting and segmenting brain tumors with Magnetic Resonance Imaging (MRI) is a difficult process. This paper suggests an automated brain tumor identification and segmentation approach employing hybrid salient segmentation with K-Means clustering and hybrid CLEACH-median filter algorithm on MRI images. The proposed method enhances the contrast and detail of MRI images using a hybrid CLEACH-median filter algorithm, and segments the most important features of the images using a hybrid salient segmentation method with K-Means clustering. The proposed method includes a stages classification step to determine the stage of the brain tumor. The findings show that the suggested approach outperformed existing methods in terms of efficiency and accuracy for both detecting and segmenting brain tumors. The suggested technique can be a useful tool for automating the detection and segmentation of brain tumors, which will help radiologists and physicians make quicker and more accurate diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Cybersecurity and Information Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.