Abstract
One of the critical parameters measured during exercise is blood pressure. However, the accurate measurement of systolic and diastolic blood pressure during exercise is difficult with auscultation and impractical with direct arterial techniques. The purpose of this study was to compare an automated system (Colin, Inc. STBP-680) with auscultation in humans during rest and exercise and to compare the automated system with direct arterial blood pressure measurement in a canine model during pharmacological challenges that resulted in a wide range of blood pressure values. Compared with direct arterial blood pressure taken in the canine model, the STBP-680 gave good estimates of diastolic blood pressure and adequately monitored relative changes in systolic blood pressure, diastolic blood pressure, and mean arterial pressure (mean arterial pressures in all instances were calculated as one-third systolic plus two-thirds diastolic blood pressures). Compared with auscultation methods in humans, the STBP-680 gave similar estimates of resting diastolic blood pressure and monitored relative changes in resting systolic blood pressures, diastolic blood pressures, and mean arterial pressures. During both treadmill and cycle ergometer exercise in humans, the STBP-680 monitored changes in systolic blood pressure, phase IV diastolic blood pressure, and mean arterial pressure. Further, the STBP-680 estimated exactly and noted relative changes in heart rate in every test. However, during exercise, quantitative estimations of systolic blood pressure by the STBP-680 were higher than those found using auscultation. Where exact, quantitative measures of blood pressure are needed, direct arterial measurement continues to be the most accurate method. However, where indirect methods can be used, the STBP-680 may provide a suitable alternative that reduces many of the technical concerns of auscultation in young, healthy individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.