Abstract

Individuals with hearing and speaking impairment communicate using sign language. The movement of hand, body and expressions of face are the means by which the people, who are unable to hear and speak, can communicate. Bangla sign alphabets are formed with one or two hand movements. There are some features which differentiates the signs. To detect and recognize the signs, analyzing its shape and comparing its features is necessary. This paper aims to propose a model and build a computer systemthat can recognize Bangla Sign Lanugage alphabets and translate them to corresponding Bangla letters by means of deep convolutional neural network (CNN). CNN has been introduced in this model in form of a pre-trained model called “MobileNet” which produced an average accuracy of 95.71% in recognizing 36 Bangla Sign Language alphabets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.