Abstract

Simulating a clinical condition of intracerebral hemorrhage (ICH) in animals is key to research on the development and testing of diagnostic or treatment strategies for this high-mortality disease. In order to study the mechanism, pathology, and treatment for hemorrhagic stroke, various animal models have been developed. Measurement of hematoma volume is an important assessment parameter to evaluate post-ICH outcomes. However, due to tissue preservation conditions and variables in digitization, quantification of hematoma volume is usually labor intensive and sometimes even subjective. The objective of this study is to develop an automated method that can accurately and efficiently obtain unbiased cerebral hematoma volume. We developed an application (MATLAB program) that can delineate the brain slice from the background and use the Hue information in the Hue/Saturation/Value (HSV) color space to segment the hematoma region. The segmentation threshold of Hue is calculated based on the Bayes classifier theorem so that the minimum error is mathematically ensured and automated processing is enabled. To validate the developed method, we compared the outcomes from the developed method with the hemoglobin content by the spectrophotometric assay method. The results were linearly correlated with statistical significance. The method was also validated by digital phantoms with an error less than 5% compared with the ground truth from the phantoms. Hematoma volumes yielded by the automated processing and those obtained by the operator's manual operation are highly correlated. This automated segmentation approach can be potentially used to quantify hemorrhagic outcomes in rodent stroke models in an unbiased and efficient way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.