Abstract

PurposeFunctional lung mapping from Ga68-ventilation/perfusion (V/Q) PET/CT, which has been shown to correlate with pulmonary function tests (PFTs), may be beneficial in a number of clinical applications where sparing regions of high lung function is of interest. Regions of clumping in the proximal airways in patients with airways disease can result in areas of focal intense activity and artefact in ventilation imaging. These artefacts may even shine through to subsequent perfusion images and create a challenge for quantitative analysis of PET imaging. We aimed to develop an automated algorithm that interprets the uptake histogram of PET images to calculate a peak uptake value more representative of the global lung volume.MethodsSixty-six patients recruited from a prospective clinical trial underwent both V/Q PET/CT imaging and PFT analysis before treatment. PET images were normalised using an iterative histogram analysis technique to account for tracer hotspots prior to the threshold-based delineation of varying values. Pearson’s correlation between fractional lung function and PFT score was calculated for ventilation, perfusion, and matched imaging volumes at varying threshold values.ResultsFor all functional imaging thresholds, only FEV1/FVC PFT yielded reasonable correlations to image-based functional volume. For ventilation, a range of 10–30% of adapted peak uptake value provided a reasonable threshold to define a volume that correlated with FEV1/FVC (r = 0.54–0.61). For perfusion imaging, a similar correlation was observed (r = 0.51–0.56) in the range of 20–60% adapted peak threshold. Matched volumes were closely linked to ventilation with a threshold range of 15–35% yielding a similar correlation (r = 0.55–0.58).ConclusionsHistogram normalisation may be implemented to determine the presence of tracer clumping hotspots in Ga-68 V/Q PET imaging allowing for automated delineation of functional lung and standardisation of functional volume reporting.

Highlights

  • Functional lung volume obtained from Ga68-ventilation/perfusion (V/Q) PET/CT imaging, a fractional measure of the total lung that exhibits appreciable uptake of inhaled or perfused tracer, has been shown to correlate with pulmonary function tests (PFTs) [1, 2]

  • A range of 10–30% of adapted peak uptake value provided a reasonable threshold to define a volume that correlated with FEV1/forced vital capacity (FVC) (r = 0.54–0.61)

  • Histogram normalisation may be implemented to determine the presence of tracer clumping hotspots in Ga-68 V/Q PET imaging allowing for automated delineation of functional lung and standardisation of functional volume reporting

Read more

Summary

Introduction

Functional lung volume obtained from Ga68-ventilation/perfusion (V/Q) PET/CT imaging, a fractional measure of the total lung that exhibits appreciable uptake of inhaled or perfused tracer, has been shown to correlate with pulmonary function tests (PFTs) [1, 2]. This shows promise in utilising volumetric imaging to determine areas which may warrant avoidance in external beam radiotherapy [3, 4], assessment of radiation injury to the lung [5], and estimating the loss of function after surgery in the context of resection of lung cancers [6,7,8]. The aim of this work was to identify an automated, objective means to improve on the previous process by implementing an iterative normalisation of the maximum uptake voxel intensity prior to thresholding—an initialisation step to remove the requirement for manual pre-processing by the reviewer

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call