Abstract

Abstract Introduction Early prediction of potential neurological recovery in patients after cardiac arrest is challenging. Recent studies suggest that the densitrometic gray-white matter ratio (GWR) determined from cranial computed tomography (CT) scans may be a reliable predictor of poor outcome. We evaluated an automated, rater independent method to determine GWR in CT as an early objective imaging predictor of clinical outcome. Methods We analyzed imaging data of 84 patients after cardiac arrest that underwent noncontrast CT within 24h after arrest. To determine GWR in CT we applied two methods using a recently published automated probabilistic gray-white matter segmentation algorithm (GWR_aut) and conventional manual measurements within gray-white regions of interest (GWR_man). Neurological outcome was graded by the cerebral performance category (CPC). As part of standard routine CPC was assessed by the treating physician in the intensive care unit at admission and at discharge to normal ward. The performance of GWR measures (automated and manual) to predict the binary clinical endpoints of poor (CPC3–5) and good outcome (CPC1–2) was assessed by ROC analysis with increasing discrimination thresholds. Results of GWR_aut were compared to GWR_man of two raters. Results Of 84 patients, 55 (65%) showed a poor outcome. ROC curve analysis revealed reliable outcome prediction of GWR_aut (AUC 0.860) and GWR_man (AUC 0.707 and 0.699, respectively). Predictive power of GWR_aut was higher than GWR_man by each rater ( p =0.019 and p =0.021, respectively) at an optimal cut-off of 1.084 to predict poor outcome (optimal criterion with 92.7% sensitivity, 72.4% specificity). Interrater reliability of GWR_man by intra-class correlation coefficient (ICC) was moderate (0.551). Conclusion Automated quantification of GWR in CT may be used as an objective observer-independent imaging marker for outcome in patients after cardiac arrest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.