Abstract

An automated method of ribosomal intergenic spacer analysis (ARISA) was developed for the rapid estimation of microbial diversity and community composition in freshwater environments. Following isolation of total community DNA, PCR amplification of the 16S-23S intergenic spacer region in the rRNA operon was performed with a fluorescence-labeled forward primer. ARISA-PCR fragments ranging in size from 400 to 1,200 bp were next discriminated and measured by using an automated electrophoresis system. Database information on the 16S-23S intergenic spacer was also examined, to understand the potential biases in diversity estimates provided by ARISA. In the analysis of three natural freshwater bacterial communities, ARISA was rapid and sensitive and provided highly reproducible community-specific profiles at all levels of replication tested. The ARISA profiles of the freshwater communities were quantitatively compared in terms of both their relative diversity and similarity level. The three communities had distinctly different profiles but were similar in their total number of fragments (range, 34 to 41). In addition, the pattern of major amplification products in representative profiles was not significantly altered when the PCR cycle number was reduced from 30 to 15, but the number of minor products (near the limit of detection) was sensitive to changes in cycling parameters. Overall, the results suggest that ARISA is a rapid and effective community analysis technique that can be used in conjunction with more accurate but labor-intensive methods (e.g., 16S rRNA gene cloning and sequencing) when fine-scale spatial and temporal resolution is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call