Abstract
Abnormalities of aortic surface and aortic diameter can be related to cardiovascular disease and aortic aneurysm. Computer-based aortic segmentation and measurement may aid physicians in related disease diagnosis. This paper presents a fully automated algorithm for aorta segmentation in low-dose non-contrast CT images. The original non-contrast CT scan images as well as their pre-computed anatomy label maps are used to locate the aorta and identify its surface. First a seed point is located inside the aortic lumen. Then, a cylindrical model is progressively fitted to the 3D image space to track the aorta centerline. Finally, the aortic surface is located based on image intensity information. This algorithm has been trained and tested on 359 low-dose non-contrast CT images from VIA-ELCAP and LIDC public image databases. Twenty images were used for training to obtain the optimal set of parameters, while the remaining images were used for testing. The segmentation result has been evaluated both qualitatively and quantitatively. Sixty representative testing images were used to establish a partial ground truth by manual marking on several axial image slices. Compared to ground truth marking, the segmentation result had a mean Dice Similarity Coefficient of 0.933 (maximum 0.963 and minimum 0.907). The average boundary distance between manual segmentation and automatic segmentation was 1.39 mm with a maximum of 1.79 mm and a minimum of 0.83 mm. Both qualitative and quantitative evaluations have shown that the presented algorithm is able to accurately segment the aorta in low-dose non-contrast CT images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.