Abstract

Lane markings are a key element for Autonomous Driving. The generation of high definition maps and ground-truth data require extensive manual labor. In this paper, we present an efficient and robust method for the offline annotation of lane markings, using low-density LIDAR point clouds and odometry information. The odometry is used to accumulate the scans and to process them using blocks following the trajectory of the vehicle. At each block, candidate lane marking points are detected by generating virtual scan-lines and applying a dynamically optimized filter function to the LIDAR intensity values. The lane markings are tracked block wise, and their width is estimated and classified as either solid or dashed. The results are lists of connected 3D points that represent the different lane markings. The accuracy of the proposed method was tested against manually labeled recordings. A novel evaluation methodology focused on the lateral precision of detections is presented. Moreover, a web user interface was used to load the produced annotations, achieving a reduction of 60% in the annotation time, as compared to a fully manual baseline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.