Abstract

Reversible protein phosphorylation plays a critical role in cell signaling and is responsible for the regulation of many biological processes in most living organisms. The low stoichiometry of protein phosphorylation requires sensitive analysis by tandem mass spectrometry. However, incomplete peptide fragmentation and the loss of labile phosphate groups complicate identification of the site of the phosphate motif. Here, we have implemented and evaluated a novel approach for phospho-site localization by the combined use of peptide tandem mass spectrometry data obtained using both collision-activated dissociation and electron transfer dissociation, an approach termed the Cscore. The scoring algorithm used in the Cscore was adapted from the widely used Ascore method. The analytical benefit of integrating the product ion information of both ETD and CAD data are evident by increased confidence in phospho-site localization and the number of assigned phospho-sites at a fixed false-localization rate. The average calculated Cscore from a large data set (>7000 phosphopeptide MS/MS spectra) was ∼32 compared to ∼23 and ∼17 for the Ascore using collision-activated dissociation (CAD) or electron transfer dissociation (ETD), respectively. Compared with the Ascore using either CAD or ETD, the Cscore identified up to 88% more phosphorylation sites. Using a phosphopeptide library revealed that the score threshold for obtaining a false-localization rate of 0.5% was lower for the Cscore than either the Ascore (CAD) or the Ascore (ETD).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call