Abstract

Modeling intermolecular interactions of complex non-covalent structures is important in many areas of chemistry. To facilitate the generation of reasonable dimer, oligomer, and general aggregate geometries, we introduce an automated computational interaction site screening (aISS) workflow. This easy-to-use tool combines a genetic algorithm employing the intermolecular force-field xTB-IFF for initial search steps with the general force-field GFN-FF and the semi-empirical GFN2-xTB method for geometry optimizations. Compared with the alternative CREST program, aISS yields similar results but with computer time savings of 1-3 orders of magnitude. This allows for the treatment of systems with thousands of atoms composed of elements up to radon, e.g., metal-organic complexes, or even polyhedra and zeolite cut-outs which were not accessible before. Moreover, aISS can identify reactive sites and provides options like site-directed (user-guided) screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.