Abstract

Crystallogenesis, usually based on the vapor diffusion method, is currently considered one of the most difficult steps in macromolecular X-ray crystallography. Due to the increasing number of crystallization assays performed by protein crystallographers, several automated analysis methods are under development. Most of these methods are based on microscope images and shape recognition. We propose an alternative method of identifying protein crystals: by directly exposing the crystallization drops to an X-ray beam. The resulting diffraction provides far more information than classical microscope images. Not only is the presence of diffracting crystals revealed, but also a first estimation of the space group, cell parameters, and mosaicity is obtained. In certain cases, it is also possible to collect enough data to verify the presence of a specific substrate or a heavy atom. All these steps are performed without the sometimes tedious necessity of removing crystals from their crystallization drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.